
Statistical Physics of Information Measures

Neri Merhav

Department of Electrical Engineering

Technion – Israel Institute of Technology

Technion City, Haifa, Israel

Partly joint work with D. Guo (Northwestern U.) and S. Shamai (Technion).

Physics of Algorithms ‘09, Santa Fe, NM, USA, Aug. 31 – Sep. 4, 2009

– p. 1/27



Outline

Relations between Information Theory (IT) and statistical physics:

Conceptual aspects – relations between principles in the two areas.

Technical aspects – identifying similar mathematical formalisms and

borrowing techniques.

In this talk we:

Briefly review basic background in IT.

Discuss some physics of the Shannon limits.

Briefly review basic background in estimation theory.

Touch upon statistical physics of signal estimation via the mutual

information.
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First Part:

Physics of the Shannon Limits
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The Shannon Limits

Lossless data compression:

compression ratio ≥ H= entropy.

Lossy compression:

compression ratio ≥ R(D)= rate–distortion func.

Channel coding:

coding rate ≤ C= channel capacity.

Joint source–channel coding:

decoding error ≥ R−1(C)= distortion–rate func. at rate C.

etc. etc. etc.
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The Information Inequality

Each of the above–mentioned fundamental limits of IT, as well as many others,
is based on the information inequality in some form:

For any two distributions, P and Q, over an alphabet X :

D(P‖Q)
∆
=

X

x

P (x) log
P (x)

Q(x)
≥ 0.

In physics, it is known as the Gibbs inequality.
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The Gibbs Inequality

Let E0(x) and E1(x) be two Hamiltonians of a system. For a given β, let

Pi(x) =
e−βEi(x)

Zi
, Zi =

X

x

e−βEi(x), i = 0, 1.

Then,

0 ≤ D(P0‖P1) =

*

ln
e−βE0(X)/Z0

e−βE1(X)/Z1

+

0

= ln Z1 − ln Z0 + β 〈E1(X)− E0(X)〉0

or

〈E1(X)− E0(X)〉0 ≥ kT ln Z0 − kT ln Z1

= F1 − F0
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Interpretation of 〈E1(X) − E0(X)〉
0
≥ ∆F

A system with Hamiltonian E0(x) – in equilibrium ∀ t < 0.
Free energy = −kT ln Z0.

At t = 0, the Hamiltonian jumps, by W = E1(x)− E0(x): from E0(x) to
E1(x) – by abruptly applying a force. Energy injected:
〈W 〉0 = 〈E1(X)− E0(X)〉0.

New system, with Hamiltonian E1, equilibrates.
Free energy = −kT ln Z1.

Gibbs inequality: 〈W 〉0 ≥ ∆F .

〈W 〉0 −∆F = kT ·D(P0‖P1)

is the dissipated energy = entropy production (system + environment) due to
irreversibility of the abruptly applied force.
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Example – Data Compression and the Ising Model

Let X ∈ {−1,+1}n ∼ Markov chain P0(x) =
Q

i P0(xi|xi−1) with

P0(x|x′) =
exp(Jx · x′)

Z0
, x, x′ ∈ {−1,+1}

Code designer thinks that X ∼ Markov with parameters:

P1(x|x′) =
exp(Jx · x′ + Kx)

Z1(x′)
.

D(P0‖P1) = loss in compression due to mismatch. Easy to see that

E0(x) = −J ·
X

i

xixi−1; E1(x) = −J ·
X

i

xixi−1 −B ·
X

i

xi

where

B = K +
1

2
ln

cosh(J −K)

cosh(J + K)
.

Thus, W = −B ·Pi xi means an abrupt application of the magnetic field B.
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Physics of the Data Processing Theorem (DPT)

Mutual information: Let (U, V ) ∼ P (u, v):

I(U ; V ) ≡
fi

log
P (U, V )

P (U)P (V )

fl

.

DPT:

X → U → V Markov chain =⇒ I(X; U) ≥ I(X;V ).

Pf:

I(X;U)− I(X;V ) =
D

D(PX|U,V (·|U, V )‖PX|V (·|V ))
E

≥ 0. �

Supports most, if not ∀, Shannon limits.
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Physics of the DPT (Cont’d)

Let β = 1. Given (u, v), let

E0(x) = − ln P (x|u, v) = − ln P (x|u); E1(x) = − ln P (x|v).

Z0 =
X

x

e−1·[− ln P (x|u,v)] =
X

x

P (x|u, v) = 1

and similarly, Z1 = 1. Thus, F0 = F1 = 0, and so, ∆F = 0.
After averaging over PUV :

〈W (X)〉0 = 〈− ln P (X|V ) + ln P (X|U)〉
= H(X|V )−H(X|U)

= I(X;U)− I(X;V ).

〈W 〉0 = I(X;U)− I(X;V ) ≥ 0 = ∆F.
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Discussion

The relation
〈W 〉0 −∆F = kT ·D(P0‖P1) ≥ 0

is known (Jarzynski ‘97, Crooks ‘99, ..., Kawai et. al. ‘07), but with different
physical interpretations, which require some limitations.

Present interpretation – holds generally; Applied in particular to the DPT.

In our case:

Maximum irreversibility: 〈W 〉0 – fully dissipated: ∆F = 0.

All dissipation – in the system, none in the environment:

〈W 〉0 = T∆S = 1 · [H(X|V )−H(X|U)].

Rate loss due to gap between mutual informations:
irreversible process⇐⇒ irreversible info: I(X;U) > I(X;V ) −→ U

cannot be retrieved from V .
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Relation to Jarzynski’s Equality

Let
Eλ(x) = E0(x) + λ[E1(x)− E0(x)]

interpolate E0 and E1. λ – a generalized force.
Jarzynski’s equality (1997): ∀ protocol {λt} with λt = 0 ∀ t ≤ 0 and λt = 1

∀ t ≥ τ (τ ≥ 0), the injected energy

W =

Z τ

0
dλt[E1(xt)− E0(xt)]

satisfies
D

e−βW
E

= e−β∆F .

Jensen:
D

e−βW
E

≥ exp{−β 〈W 〉} so, 〈W 〉 ≥ ∆F more generally.

Equality – for a reversible process – W = deterministic.
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Informational Jarzynski Equality

Taking
E0(x) = − ln P0(x), E1(x) = − ln P1(x), β = 1

and defining a “protocol” 0 ≡ λ0 → λ1 → . . .→ λn ≡ 1, and

W =

n−1
X

i=0

(λi+1 − λi) ln
P0(Xi)

P1(Xi)
, Xi ∼ Pλi

∝ P 1−λi

0 Pλi

1 ,

one can show:
D

e−W
E

= 1 = e−∆F .

Jensen: generalized information inequality:

Z 1

0
dλt

fi

ln
P0(X)

P1(X)

fl

λt

≥ 0.
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Summary of First Part

Suboptimum commun. system⇐⇒ irreversible process.

Info rate loss⇐⇒ dissipated energy→ entropy ↑
Fundamental limits of IT⇐⇒ second law.

Possible implications of Jarzynski’s equality in IT.
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Second Part:

Statistical Physics of Signal Estimation
via the Mutual Information
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Signal Estimation – Preliminaries

Let
Y = X + Z (all vectors in IRn)

where X is the desired signal and Z is noise ⊥ X .
Estimator: any function X̂ = f(Y ). We want X̂ as ‘close’ as possible to X .

mean square error =
D

‖X − X̂‖2
E

=
D

‖X − f(Y )‖2
E

.

A fundamental result: minimum mean square error (MMSE) = conditional
mean:

X
∗ = f∗(y) = 〈X〉Y =y ≡

Z

dx · xP (x|y).

Normally – difficult to apply X∗ and assess performance.

X∗ and MMSE may exhibit irregularities – threshold effects←→ phase
transitions in analogous physical systems. Motivates a statistical–mechanical
perspective.
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The I–MMSE Relation

[Guo–Shamai–Verdú 2005]: for Y = X + Z, Z ∼ N (0, I · 1/β), regardless of
P (X):

mmse(X |Y ) = 2 · d
dβ

I(X ; Y ),

where mmse(X |Y ) ≡ 〈‖X − f∗(Y )‖2〉.
Simple example: If X ∼ N (0, σ2I),

I(X ; Y )

n
=

1

2
log(1 + βσ2)

=⇒ mmse(X |Y )

n
=

σ2

1 + βσ2
.

MMSE – calculated using stat–mech via the mutual info and I–MMSE relation
=⇒
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Statistical Physics of the MMSE

I(X ; Y ) =

fi

log
P (X |Y )

P (X)

fl

β

=

fi

log
exp{−β‖Y −X‖2/2}

P

x P (x) exp{−β‖Y − x‖2/2}

fl

β

= −n

2
− 〈log Z(β|Y )〉β

where
Z(β|Y ) =

X

x

P (x) exp{−β‖Y − x‖2/2},

and so,

mmse(X |Y ) = 2 · dI(X ; Y )

dβ
= −2

∂

∂β
〈log Z(β|Y )〉β .

Similar to internal energy, but here also 〈·〉β depends on β.
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Statistical Physics of the MMSE (Cont’d)

A more detailed derivation yields:

mmse(X |Y ) =
n

β
+ Cov{‖Y −X‖2, log Z(β|Y )}

The term n/β ∼ energy equipartition theorem.

Covariance term – dependence of 〈·〉β on β.
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Statistical Physics of the MMSE (Cont’d)

In stat. mech: Σ(β) = log Z(β) + β〈E(X)〉

= log Z(β)− β
d log Z(β)

dβ
⇐= diff. eq.

log Z(β) = −βE0 + β ·
Z ∞

β

dβ̂ · Σ(β̂)

β̂2
; E0 = ground–state energy

=⇒ E = −d log Z(β)

dβ
=

"

E0 −
Z ∞

β

dβ̂ · Σ(β̂)

β̂2

#

+
Σ(β)

β

Similarly for 〈log Z(β|Y )〉β except that

Σ(β)⇐=
β

2
Cov{‖Y −X‖2, log Z(β|Y )} − I(X ; Y )

E0 ⇐=
1

2

D

min
x
‖Y − x‖2

E

β
.
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Examples

Example 1 – Random Codebook on a Sphere Surface

Y = X + Z ; X ∼ Unif{x1, . . . , xM}, M = enR

Codewords: randomly drawn independently uniformly on Surf(
√

nσ2).

lim
n→∞

〈I(X ;Y )〉
n

=

(

1
2 log(1 + βσ2) β < βR

R β ≥ βR

where βR is the solution to the eqn R = 1
2 log(1 + βσ2). Thus,

lim
n→∞

mmse(X |Y )

n
=

(

σ2

1+βσ2 β < βR

0 β ≥ βR

A 1st–order φ transition in MMSE: At high temp. behaves as if X was
Gaussian and at β = βR jumps to zero!
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Examples (Cont’d)

Example 2 – Sparse Signals

Xi =

„

1− µi

2

«

Ui, i = 1, . . . , n

where µ = (µ1, . . . , µn) ∼ P (µ) are binary {±1}; Ui ∼ N (0, σ2) – i.i.d. ⊥ µ.

Z(β|y) =

Z

IRn

dxP (x) exp{−β‖y − x‖2/2} ⇐= P (x) =
X

µ

P (µ)P (x|µ)

=
X

µ

P (µ) exp

(

−1

2

n
X

i=1

func(yi, µi, q)

)

⇐= q ≡ βσ2

= const.×
X

µ

P (µ) · exp

(

n
X

i=1

µihi

)

hi = func(yi)

Sum over {µ} ≡ Ẑ(β|y): “partition function” of spins in a random field {hi}.
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Example 2 (Cont’d)

Let P (µ) ∝ exp{nf [m(µ)]} where m(µ) ≡ 1
n

P

i µi and f [m] is ‘nice’.

Ẑ(β|y) ∝
X

µ

exp

(

n

"

f [m(µ)] +
1

n

X

i

µihi

#)

Ẑ is dominated by configurations with magnetization m∗, solving the
zero–derivative equation

m = 〈tanh(f ′[m] + H)〉

where H is a RV pertaining to hi. m∗ = local maximum if:

D

tanh2(f ′[m∗] + H)
E

> 1− 1

f ′′[m∗]
.

When this becomes equality (and then reversed), m∗ ceases to dominate Ẑ

(critical point) =⇒ dominant magentization jumps elsewhere.
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Example 2 (Cont’d)

Consider the case

f [m] = am +
bm2

2

Ẑ – similar to the random–field Curie–Weiss (RFCW) model.

We analyze the mutual info using stat–mech methods, and then derive the
MMSE using the I–MMSE relation:
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MMSE for Example 2

mmse =
σ2q

2(1 + q)2
+

(1−ma)σ2

2

»

1− q(1 + q/2)

(1 + q)2

–

+

1 + ma

2

»

Cov0{Y 2, log[2 cosh(bm∗ + a + H)]}+

˙

H ′ tanh(bm∗ + a + H)
¸

0

–

+

+
1−ma

2

»

1

(1 + q)2
·Cov1{Y 2, log[2 cosh(bm∗ + a + H)]}+

˙

H ′ tanh(bm∗ + a + H)
¸

1

–

where 〈·〉s and Covs are w.r.t. Y ∼ N (0, σ2s + 1/β), s = 0, 1, and

H ′ = − σ2

2(1 + q)
+

q(q + 2)Y 2

2(1 + q)2
.
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Example 2: Discussion

MMSE depends on m∗: jumps of m∗ yield discontinuities in MMSE.

As m∗ jumps, the response of X∗(Y ) jumps as well.

In the C–W model: 1st order transition w.r.t. mag. field and 2nd order
transition w.r.t. β. Here – a 1st order transition w.r.t. β because
dependence on β is via the “magnetic fields” {hi}..
b = 0: i.i.d. spins =⇒ no φ transitions =⇒ sparsity alone does not cause φ

transitions.
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Conclusion of Second Part

MMSE calculated using stat. mech. via the mutual info.

Statistical–mech techniques can be used to inspect inherent irregularities
in the estimation error, via phase transitions.

Possible to handle situations of mismatch between true prior P and
assumed prior Q.
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